Revision: 22501
Initial Code
Initial URL
Initial Description
Initial Title
Initial Tags
Initial Language
at January 13, 2010 13:45 by ahawker
Initial Code
/// <summary> /// Given a single tuning data instance and attribute indices, find the /// k nearest neighbors based on Euclidean distance. /// </summary> /// <param name="tune">Single tuning instance</param> /// <param name="indices">Indices of features used</param> /// <param name="k">Number of neighbors to find</param> /// <returns>KVP(double,DataInstance)</returns> private List<KeyValuePair<double,DataInstance>> _FindNearestNeighbors(DataInstance tune, List<int> indices, int k){ var neighbors = new List<KeyValuePair<double,DataInstance>>(); foreach(DataInstance trainingInstance in _DataSet.DataEntries){ if(trainingInstance == tune) continue; double distance = _ComputeDistance(tune, trainingInstance, indices); neighbors.Add(new KeyValuePair<double,DataInstance>(distance, trainingInstance)); } return neighbors.OrderBy(n=>n.Key).Take(k).ToList(); } /// <summary> /// Computes the Euclidean distance between the DataInstances tune/train using /// the features located at the given indices. /// </summary> /// <param name="indices">Indices of the features used</param> /// <param name="tune">Single tuning instance</param> /// <param name="train">Single training instance</param> /// <returns>Double</returns> private double _ComputeDistance(DataInstance tune, DataInstance train, List<int> indices){ double d = 0; foreach(int i in indices){ switch(_DataSet.Features[i].Type){ case Types.continuous: d += _Distance(tune[i], train[i]); break; case Types.discrete: d += (tune[i] == train[i]) ? 0 : 1; break; case Types.output: default: break; } } return Math.Sqrt(d); } /// <summary> /// Given two values, compute (x - y)^2. /// Subroutine for Euclidean Distance computation. /// </summary> /// <param name="tune">Value from our local tuning set.</param> /// <param name="train">Value from our local training set.</param> /// <returns>Double</returns> private double _Distance(string tune, string train){ double x = double.Parse(tune); double y = double.Parse(train); return Math.Pow(x - y, 2); }
Initial URL
Initial Description
Snippet out of my C# KNN implementation. Uses leave-one-out cross validation tuning with our given K to find our nearest neighbors.
Initial Title
KNN - Use Euclidean Distance to find nearest neighbors
Initial Tags
c, Net
Initial Language
C#